

Capacity Value Results for 2022 RNA 2030 Cases and IRM 2023 PBC Cases

Eduardo Ibanez, Ph.D.; Mitch Bringolf

GE Energy consulting

Reposted: 11/09/2022

Overview

This slide deck summarizes the capacity value calculations, evaluated for the following sensitivities:

- Preliminary NYISO 2022 RNA Base Case for model year 2030 (presented at the 9/30/22 ICAPWG)
- Re-optimized NYISO 2022 RNA Base Case for model year 2030
- Preliminary NYISO 2022 RNA Policy Case for model year 2030
- Re-optimized NYISO 2022 RNA Policy Case for model year 2030
- NYISO 2023 IRM Preliminary Base Case (PBC)
- NYISO 2023 IRM PBC at Level of Excess (LOE)

The capacity value calculations were performed for the same list of marginal units, as presented in previous presentations:

Only includes the 50 MW and 100 MW sizes for incremental units, to reduce the number of simulations

Both ELCC and MRI techniques were applied to most cases

- The ELCC technique was not applied to calculate CAFs for the 2023 PBC LOE case
- The ELCC technique was applied to a subset of units for the re-optimized RNA Base Case and RNA Policy Case

Reference

3

For methodology, assumptions, and more details please refer to previous presentations:

- 3/31: https://www.nyiso.com/documents/20142/29607069/3%20GE-Support%20for%20NYISO%20Capacity%20Accreditation%20Project 0331.pdf
- 4/28: https://www.nyiso.com/documents/20142/30276257/GE-Support%20for%20NYISO%20Capacity%20Accreditation%20Project 0428.pdf
- 5/24: https://www.nyiso.com/documents/20142/30888946/2%20GE-Support%20for%20NYISO%20Capacity%20Accreditation%20Project 0524.pdf
- 6/28: https://www.nyiso.com/documents/20142/31830389/GE-Support-for-NYISO-Capacity-Accreditation-Project-0628.pdf

For context, some of the slides also include results for:

- NYISO 2022 IRM LCR database
- NYISO 2022 IRM LCR at Level of Excess (LOE)

Results for all cases are posted in a single spreadsheet, available for download

Preliminary 2022 RNA Base and Policy Cases for Model Year 2030

Capacity Value – 2030 RNA / 2023 IRM PBC results 4

Reliability Needs Assessment (RNA) database sensitivities

Two sensitivities:

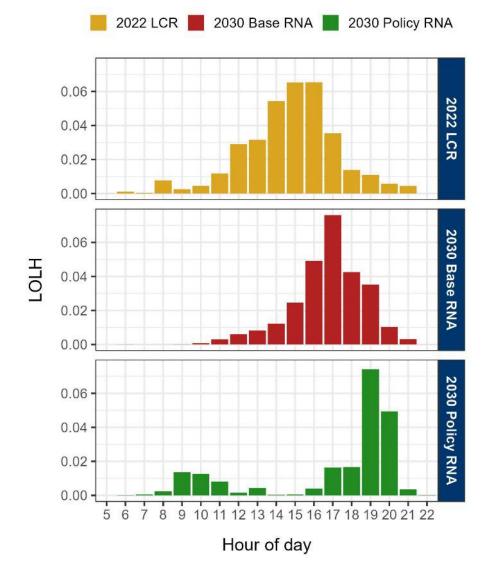
- 2022 1st pass Base Case Study for study year 2030
- 2022 Policy Case Study for study year 2030

The LCR Optimizer was used to bring the RNA Cases for year 2030 to the at criteria LOLE of 0.1

As discussed on the 10/19 meeting, the preliminary results of the RNA 2030 Base and Policy Cases were calculated on at criteria systems that were not fully optimized

- The IRMs and LCRs for the preliminary results are shown in the table on the right
- IRMs, LCRs, and CAF results for the re-optimized cases will be discussed beginning on slide 16

	Preliminary RNA Base Case 2030	Preliminary RNA Policy Case 2030
NYCA IRM	125.5%	162.3%
G-J LCR	80.6%	108.7%
J LCR	80.7%	120.5%
KLCR	109.2%	140.1%


Reliability Needs Assessment (RNA) database sensitivities (II)

The hourly LOLE distribution shifts to later in the day for study year 2030 of the 2022 1st pass Base Case Study in comparison to the hourly LOLE distribution from the 2022 NYISO LCR database, as shown in the figure

The RNA Policy Case has more behind-the-meter and utility-scale solar, which reduces the risk in the middle of the day, which moves to hours after sunset and before dawn

Capacity value results for year 2030 of the 2022 RNA Policy Case may not be representative of expected capacity values due to limitations in the modeling of energy storage at high renewable and energy storage penetration levels

Comparison of preliminary RNA 2030 cases and IRM 2022 LCR

7

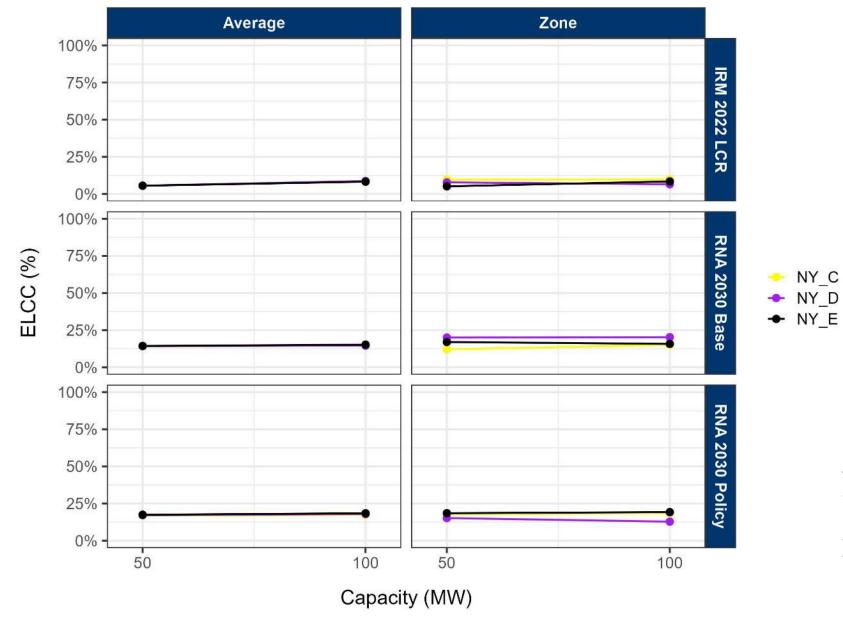
Table with capacity value for 100 MW size, averaged across zones


Biggest changes:

- Increase in offshore and offshore wind
- Reduction in solar
- Changes in ELR resources

		Average El	.CC Capacity Value	e (100 MW)	Change from 2022 LCR		
Type	Subtype	IRM 2022 LCR	RNA 2030 Base	RNA 2030 Policy	RNA 2030 Base	RNA 2030 Policy	
Thermal	5% EFOR	94.7%	96.0%	92.8%	1.3%	-1.9%	
	10% EFOR	88.1%	89.4%	89.6%	1.3%	1.5%	
Diomass	Average	65.3%	67.8%	68.1%	2.6%	2.8%	
Biomass	Zone	62.0%	62.2%	62.4%	0.2%	0.4%	
Run of river	Average	35.5%	36.4%	33.3%	0.9%	-2.1%	
Kun of fiver	Zone	39.3%	38.8%	37.6%	-0.6%	-1.8%	
Onshore wind	Average	8.6%	14.8%	17.9%	6.2%	9.3%	
Onshore wind	Zone	8.3%	17.1%	16.8%	8.8%	8.5%	
Offshore wind	Zone	26.5%	35.0%	38.5%	8.5%	12.0%	
Solar	Average	32.7%	10.1%	5.8%	-22.6%	-26.9%	
	Zone	30.8%	10.1%	5.9%	-20.7%	-24.9%	
	2h	42.7%	75.7%	37.8%	32.9%	-4.9%	
Dunamia FLD	4h	70.5%	72.5%	42.5%	2.0%	-28.0%	
Dynamic ELR	6h	76.7%	98.3%	73.1%	21.6%	-3.6%	
	8h	98.7%	99.5%	67.5%	0.8%	-31.2%	
Large budge	Dynamic	98.9%	100.0%	100.0%	1.1%	1.1%	
Large hydro	Fixed shape	97.0%	96.4%	81.3%	-0.6%	-15.7%	

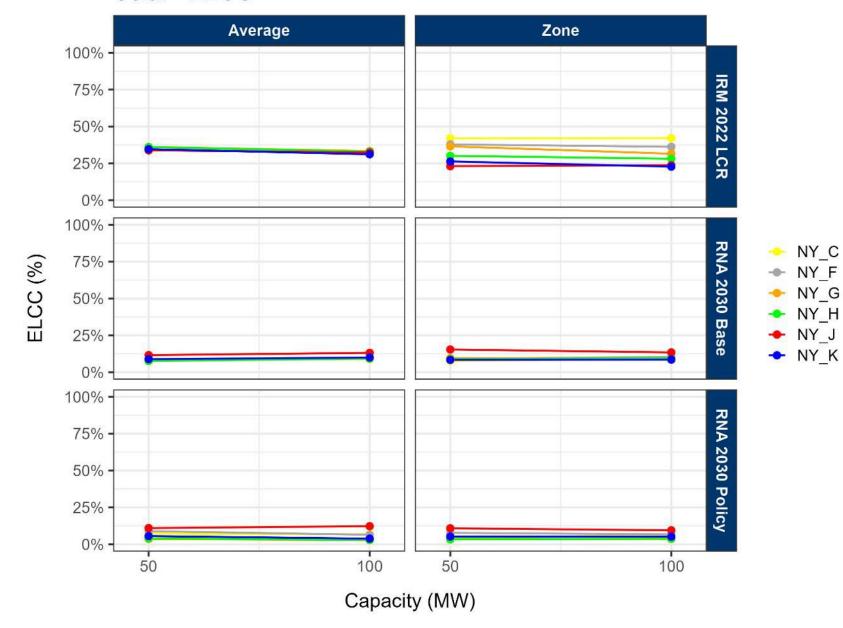
Offshore wind - ELCC



Zone = each zone uses a different shape

Average = all zones use the same shape

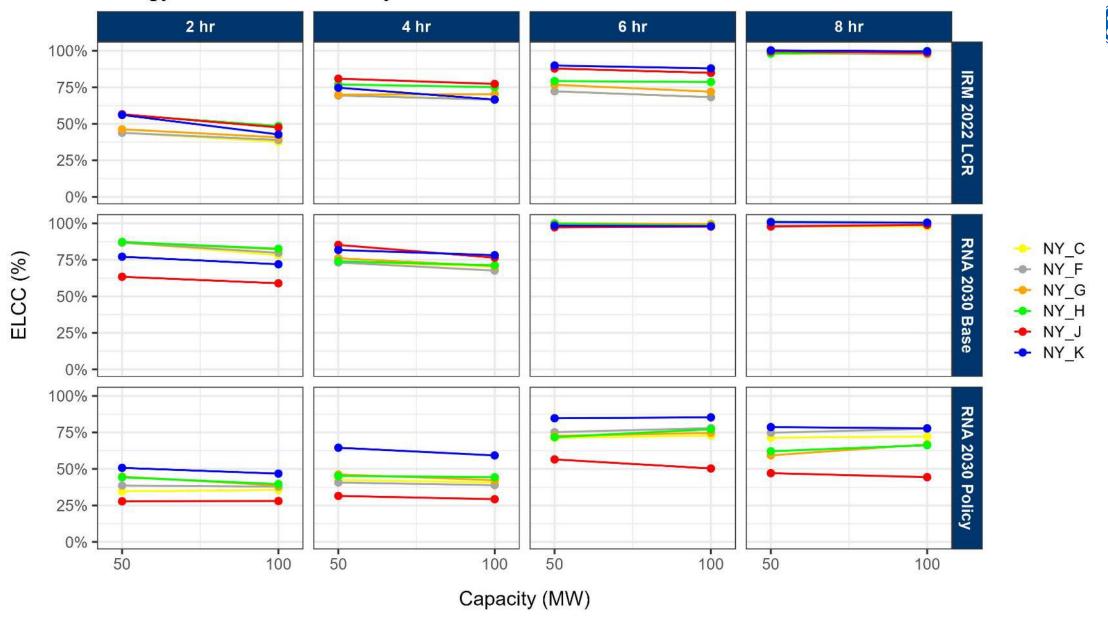
Onshore wind - ELCC


Zone = each zone uses a different shape

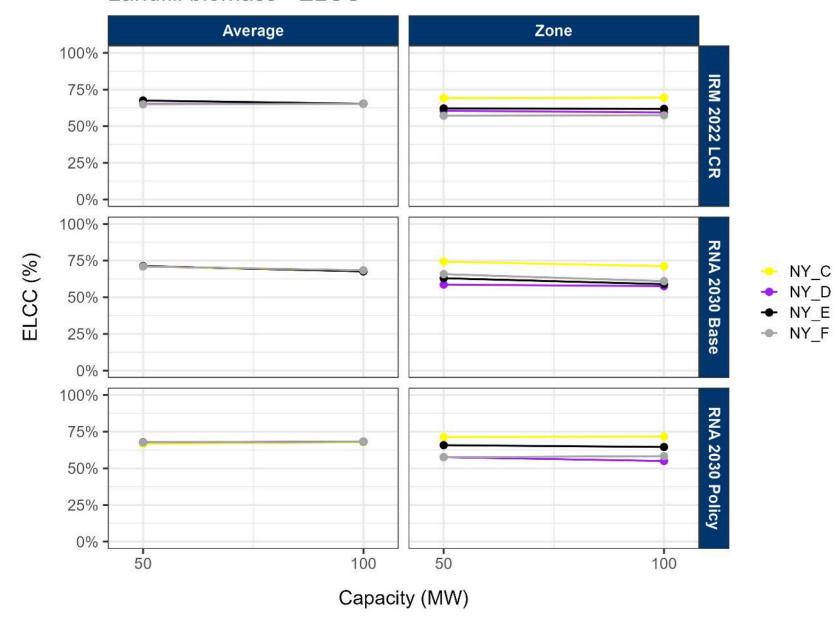
Average = all zones use the same shape

- 2030 RNA / 2023 IRM PBC results

Solar - ELCC

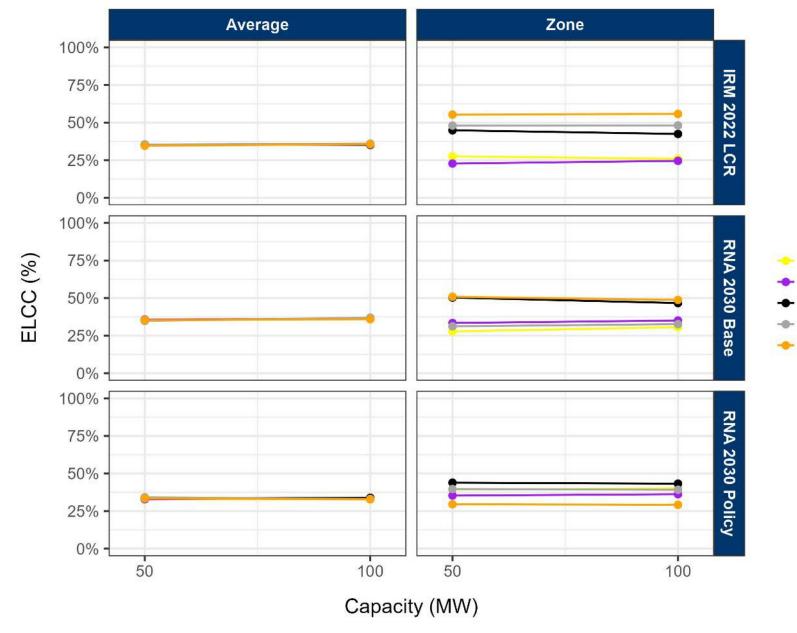


Zone = each zone uses a different shape


Average = all zones use the same shape

Energy Duration Limited, Dynamic model - ELCC

Landfill biomass - ELCC


Zone = each zone uses a different shape

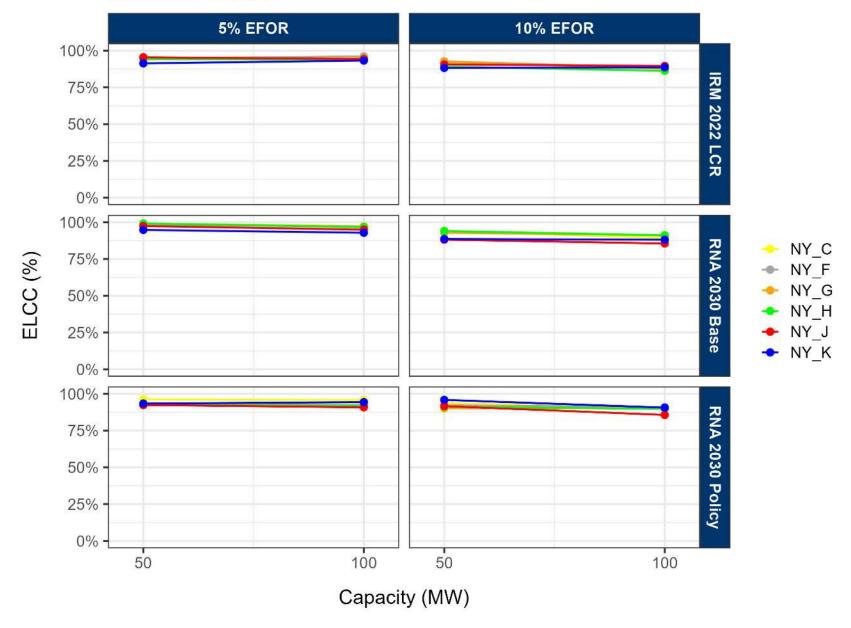
Average = all zones use the same shape

NY_C NY_D

Run of river - ELCC

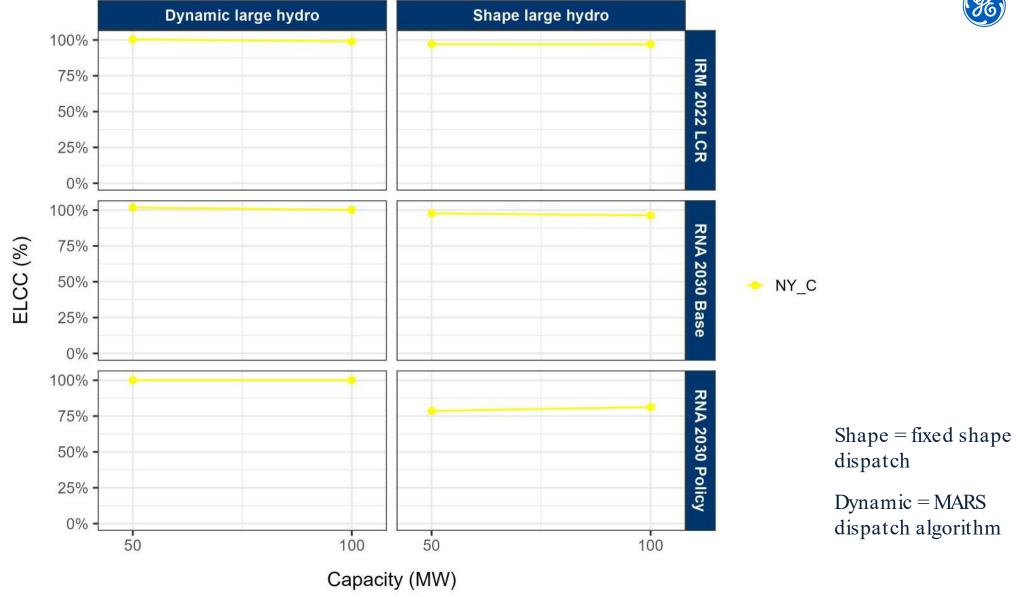
Zone = each zone uses a different shape

Average = all zones use the same shape


NY_C NY_D

NY_E NY_F

NY_G


Thermal - ELCC

Large hydro - ELCC

15

Re-optimization of the 2022 RNA 2030 Cases

Capacity Value — 2030 RNA / 2023 IRM PBC results 16

Re-optimization of the RNA 2030 Cases

As discussed on the 10/19 meeting, the preliminary results of the RNA 2030 Base and Policy Cases were calculated on at criteria systems that were not fully optimized

The LCR optimizer was rerun for both cases with corrected inputs, resulting in similar, but distinct IRM/LCRs

The MRI-technique was applied to calculate CAFs on these re-optimized cases and compared to the preliminary results

The cases with the largest deviation of MRI results were recalculated through the ELCC technique

17

Update IRM/LCRs for RNA 2030 cases

The table below compares the correctly translated IRM and LCRs for the preliminary RNA Base Case and RNA Policy Case results and the IRM and LCRs for the re-optimized cases

	RI	NA Base Case 2	030	RNA Policy Case 2030			
	Preliminary Results	' ' (hange		Preliminary Results	Re-optimized Results	Change	
NYCA IRM	125.5%	126.1%	0.6%	162.3%	162.4%	0.1%	
G-J LCR	80.6%	79.5%	-1.1%	108.7%	111.9%	3.2%	
J LCR	80.7%	79.1%	-1.6%	120.5%	119.5%	-1.0%	
KLCR	109.2%	110.2%	1.1%	140.1%	138.4%	-1.7%	

2030 RNA / 2023 IRM PBC results

Comparison of preliminary and re-optimized RNA 2030 cases

Table with capacity value for 100 MW size, averaged across zones, using MRI technique

Biggest changes for RNA Base Case:

- Onshore wind
- Selected 2h ELRs
- 4h ELRs

Biggest changes for RNA Policy Case:

- Dynamic ELRs
- Selected solar cases
- Selected offshore wind

		RNA 20	30 Base	RNA 20	30 Policy	Change	
Туре	Subtype	Preliminary	Re-optimized	Preliminary	Re-optimized	RNA Base	RNA Policy
Thermal	5% EFOR	94.8%	94.1%	95.0%	93.4%	-0.7%	-1.6%
mermai	10% EFOR	92.2%	91.8%	89.5%	90.8%	-0.4%	1.3%
Diamass	Average	68.1%	69.5%	72.6%	70.6%	1.4%	-2.0%
Biomass	Zone	63.3%	63.8%	66.7%	66.3%	0.5%	-0.3%
Run of river	Average	38.5%	37.7%	37.6%	36.3%	-0.8%	-1.3%
Kun oi river	Zone	42.7%	42.2%	42.4%	39.7%	-0.5%	-2.7%
Onshore wind	Average	21.8%	15.9%	21.6%	17.9%	-5.8%	-3.7%
	Zone	22.1%	17.2%	20.4%	17.5%	-4.9%	-2.9%
Offshore wind	Zone	44.9%	47.7%	41.5%	39.6%	2.8%	-1.9%
Solar	Average	12.8%	11.8%	8.1%	9.5%	-1.1%	1.4%
Solai	Zone	11.5%	11.4%	7.6%	9.1%	-0.1%	1.5%
	2h	83.0%	81.4%	42.1%	37.4%	-1.6%	-4.7%
Dumania ELD	4h	74.8%	80.5%	46.4%	41.9%	5.7%	-4.5%
Dynamic ELR	6h	98.2%	98.7%	77.9%	66.3%	0.5%	-11.6%
	8h	99.3%	99.8%	74.2%	65.6%	0.5%	-8.5%
Larga budes	Dynamic	99.4%	98.2%	100.0%	94.3%	-1.2%	-5.7%
Large hydro	Fixed shape	98.2%	97.4%	78.4%	77.6%	-0.8%	-0.8%

Largest changes for RNA 2030 Base Case re-run cases

In general, the changes observed for the ELCC- and MRI-based metrics are similar

For onshore wind, 4h ELRs: the magnitude of the changes is slightly smaller with ELCC, compared to MRI

			Prelin	ninary	Re-optimized		Delta	
Туре	Subtype	Zone	ELCC	MRI	ELCC	MRI	ELCC	MRI
		NY_C	14.6%	21.8%	13.2%	16.0%	-1.4%	-5.8%
	Average	NY_D	14.6%	21.8%	13.2%	16.0%	-1.4%	-5.8%
Onshore		NY_E	15.2%	21.8%	13.1%	15.9%	-2.2%	-5.9%
wind		NY_C	15.1%	18.0%	16.3%	17.2%	1.2%	-0.8%
	Zone	NY_D	20.3%	24.3%	15.5%	15.3%	-4.7%	-9.0%
		NY_E	15.8%	24.0%	13.8%	19.2%	-2.0%	-4.8%
	2hr	NY_J	59.0%	71.1%	46.9%	60.2%	-12.1%	-10.9%
		NY_K	72.0%	79.8%	76.7%	83.9%	4.7%	4.1%
		NY_C	70.4%	73.7%	73.2%	77.4%	2.8%	3.7%
Dynamic		NY_F	67.7%	72.1%	71.9%	78.2%	4.2%	6.1%
ELR	4hr	NY_G	70.7%	73.4%	72.6%	79.6%	1.9%	6.2%
	4111	NY_H	71.3%	72.6%	74.4%	79.8%	3.1%	7.2%
		NY_J	76.5%	76.9%	78.2%	82.1%	1.7%	5.1%
		NY_K	78.2%	79.8%	85.0%	85.9%	6.8%	6.1%

Largest changes for RNA 2030 Policy Case re-run cases

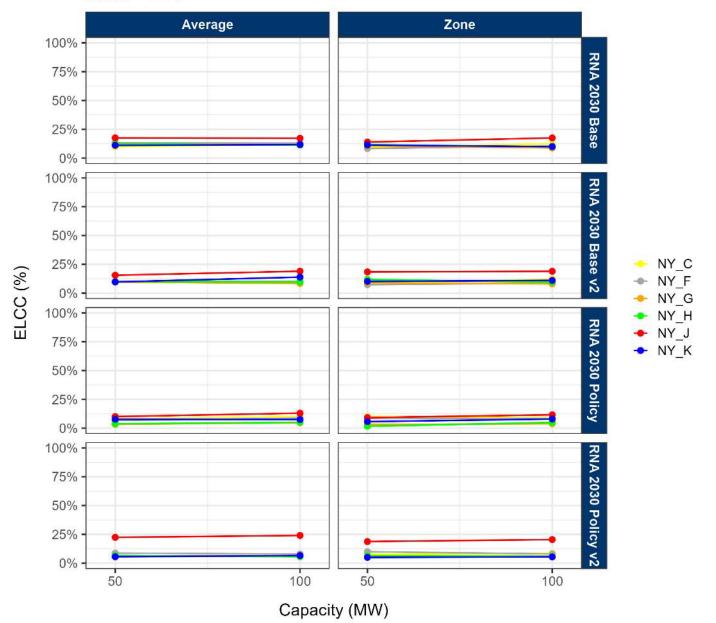
Again, the changes observed for the ELCC- and MRI-based metrics are similar

6h and 8h ELRs: have largest deltas under MRI, more moderate with ELCC

Those cases are not fully optimized because of the different pattern in daily risk (see slide 6)

			Prelin	ninary	Re-opt	imized	Delta		
Туре	Subtype	Zone	ELCC	MRI	ELCC	MRI	ELCC	MRI	
Offshore wind	Zone	NY_J	32.6%	39.2%	28.3%	32.8%	-4.4%	-6.4%	
Colon	Average	NY_J	12.2%	13.0%	19.2%	24.1%	7.0%	11.1%	
Solar	Zone	NY_J	9.5%	11.6%	16.4%	20.5%	7.0%	8.9%	
		NY_C	35.6%	38.8%	35.7%	36.6%	0.1%	-2.2%	
		NY_F	37.9%	38.9%	35.1%	35.6%	-2.8%	-3.3%	
	2hr	NY_G	38.7%	44.0%	40.1%	38.5%	1.4%	-5.6%	
	2111	NY_H	39.6%	43.8%	40.7%	38.6%	1.1%	-5.2%	
		NY_J	28.0%	35.1%	19.0%	24.5%	-9.0%	-10.5%	
		NY_K	46.8%	51.8%	47.4%	50.6%	0.6%	-1.2%	
		NY_C	40.8%	43.8%	37.6%	38.6%	-3.2%	-5.2%	
		NY_F	38.9%	40.7%	37.7%	38.2%	-1.2%	-2.6%	
	4hr	NY_G	42.3%	46.3%	41.9%	41.3%	-0.4%	-5.0%	
	4111	NY_H	44.3%	47.8%	43.1%	42.6%	-1.2%	-5.1%	
		NY_J	29.3%	38.2%	21.5%	27.4%	-7.8%	-10.8%	
Dunamic ELD		NY_K	59.3%	62.0%	61.9%	63.3%	2.7%	1.4%	
Dynamic ELR		NY_C	72.9%	77.3%	62.5%	66.0%	-10.3%	-11.3%	
		NY_F	77.9%	79.6%	68.6%	70.6%	-9.3%	-9.0%	
	6hr	NY_G	74.7%	79.4%	67.1%	66.7%	-7.6%	-12.7%	
	OIII	NY_H	77.2%	80.9%	68.5%	66.9%	-8.7%	-14.1%	
		NY_J	50.3%	64.0%	43.1%	47.0%	-7.2%	-17.0%	
		NY_K	85.3%	86.2%	78.3%	80.5%	-7.1%	-5.7%	
		NY_C	72.3%	77.5%	62.1%	66.2%	-10.1%	-11.3%	
		NY_F	77.5%	80.0%	68.4%	70.8%	-9.1%	-9.2%	
	8hr	NY_G	66.9%	72.5%	63.8%	66.2%	-3.1%	-6.2%	
	9111	NY_H	66.3%	74.7%	65.1%	66.4%	-1.2%	-8.3%	
		NY_J	44.4%	57.2%	41.8%	44.6%	-2.6%	-12.7%	
		NY_K	77.8%	83.1%	76.0%	79.6%	-1.9%	-3.6%	

Comparison of preliminary and re-optimized RNA 2030 cases

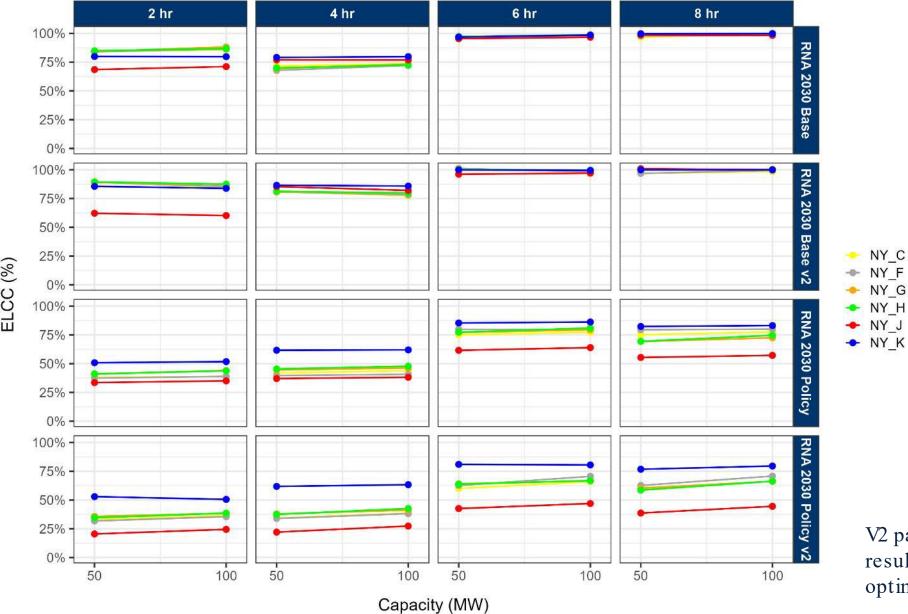

22

The graphs in the remainder of this section present the preliminary and re-optimized results for the RNA 2030 cases

We present results with the MRI technique here

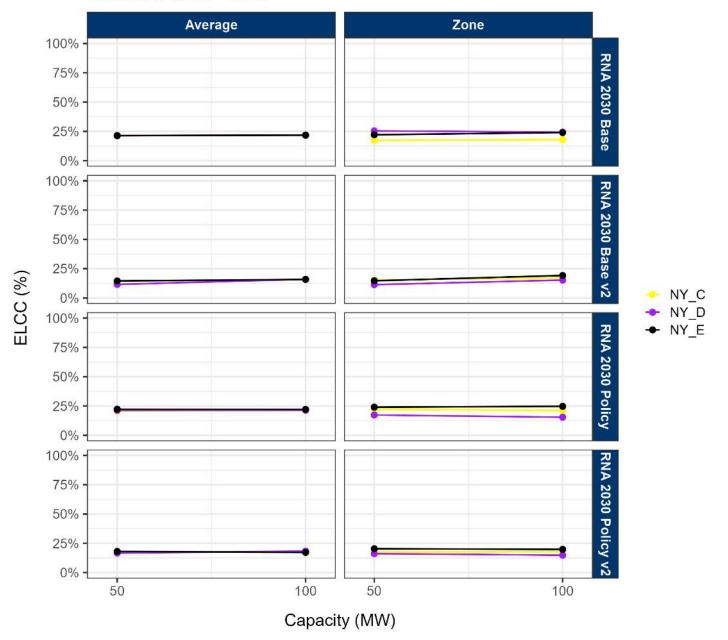
2030 RNA / 2023 IRM PBC results

Solar - MRI


Zone = each zone uses a different shape

Average = all zones use the same shape

V2 panels show the results for the reoptimized system


23

Energy Duration Limited, Dynamic model - MRI

Onshore wind - MRI

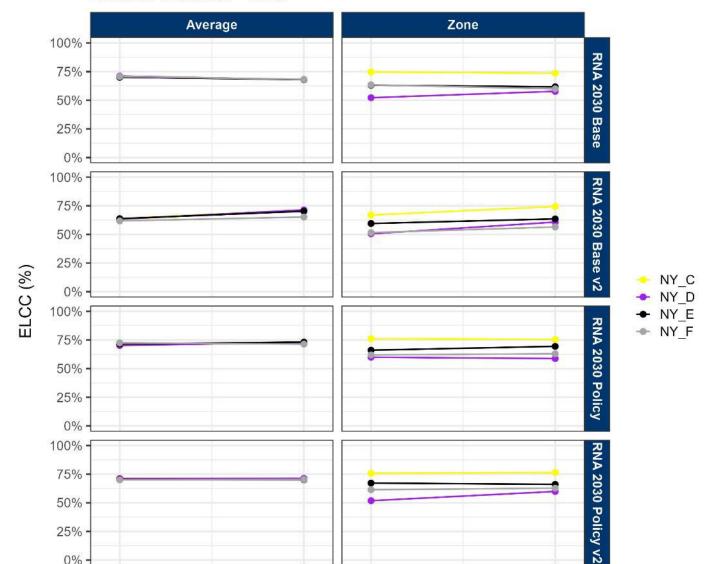


Zone = each zone uses a different shape

Average = all zones use the same shape

V2 panels show the results for the reoptimized system

Offshore wind - MRI



Zone = each zone uses a different shape

Average = all zones use the same shape

V2 panels show the results for the reoptimized system

Landfill biomass - MRI

50

100

Capacity (MW)

Zone = each zone uses a different shape

Average = all zones use the same shape

V2 panels show the results for the reoptimized system

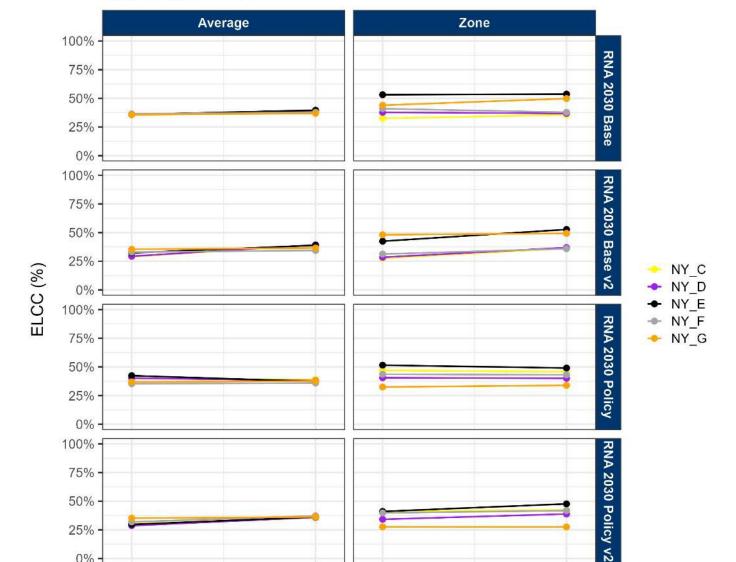
0%

50

100

Run of river - MRI

75% -


50%

25%

0%

- 2030 RNA / 2023 IRM PBC results

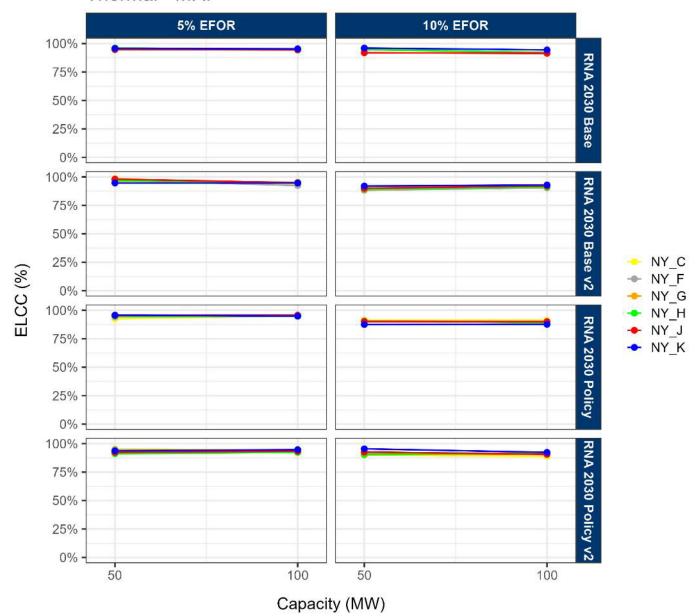
50

100

Capacity (MW)

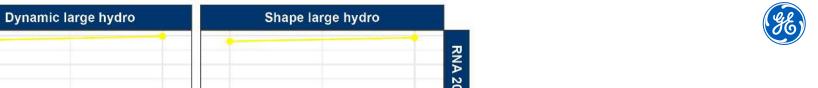
50

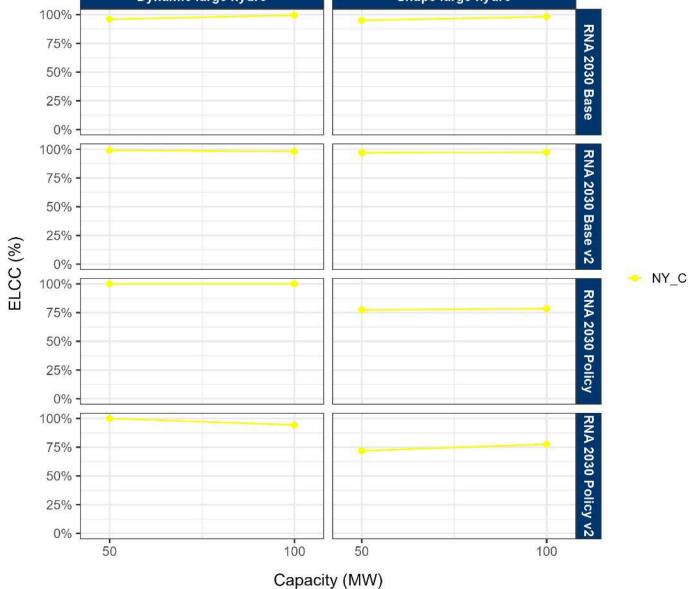
Zone = each zone uses a different shape


Average = all zones use the same shape

V2 panels show the results for the reoptimized system

100


Thermal - MRI



V2 panels show the results for the reoptimized system

Large hydro - MRI

Shape = fixed shape dispatch

Dynamic = MARSdispatch algorithm

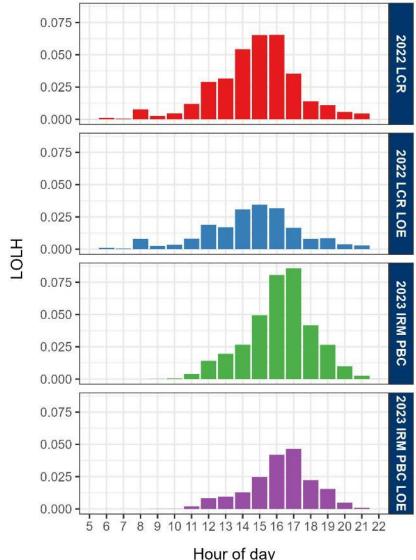
V2 panels show the results for the reoptimized system

- 2030 RNA / 2023 IRM PBC results

2023 IRM PBC sensitivities

Capacity Value – 2030 RNA / 2023 IRM PBC results 31

2023 Preliminary Base Case (PBC) database sensitivities



Two sensitivities:

- 2023 IRM Preliminary Base Case (PBC)*
 - 0.0998 IOLE
- 2023 IRM PBC at Level of Excess (LOE)*
 - 0.0531 LOLE

*Both cases include updated, newer load shapes (which were not included in the PBC, but will be included in the Final Base Case)

New load shapes cause the risk to shift later in the day. Distribution of outages is also tighter (an indicator or shorter outages being more frequent)

Comparison of 2023 PBC cases and IRM 2022 LCR

Table with capacity value for 100 MW size, averaged across zones, using MRI technique*

Biggest changes for 2023 PBC:

- Increase in offshore wind
- Reduction in solar
- Changes in ELR resources

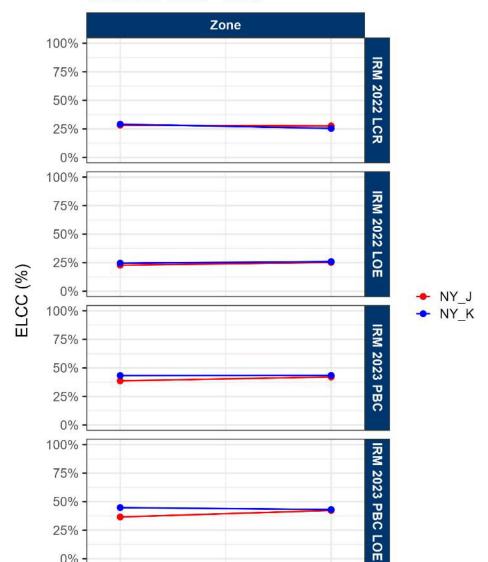
Shape-base resources have updated shapes (the most recent 5 years are used)

	Average MRI Capacity Value (100 MW)			Change from 2022 LCR	Change from 2022 LOE ¹		
Туре	Subtype	2022 LCR	2022 LOE	2023 PBC	2023 PBC LOE	2023 PBC	2023 PBC LOE
Thermal	5% EFOR	96.4%	93.4%	93.2%	94.4%	-3.3%	1.00%
mermai	10% EFOR	90.3%	89.1%	92.6%	89.2%	2.3%	0.10%
Biomass	Average	66.6%	67.7%	71.3%	68.8%	4.7%	1.10%
BIOITIASS	Zone	59.7%	62.2%	62.5%	61.7%	2.9%	-0.50%
	Average	33.8%	30.8%	39.2%	37.5%	5.3%	6.70%
Run of river	Zone	38.7%	36.7%	45.2%	40.9%	6.5%	4.20%
	Average	10.6%	8.8%	13.3%	9.3%	2.8%	0.50%
Onshore wind	Zone	10.3%	9.1%	15.3%	10.5%	5.0%	1.40%
Offshore wind	Zone	26.5%	25.6%	42.8%	42.7%	16.3%	17.10%
Solar	Average	33.1%	30.5%	16.7%	16.8%	-16.4%	-13.70%
Solal	Zone	31.0%	29.1%	16.4%	14.8%	-14.7%	-14.30%
	2h	46.9%	45.3%	52.1%	61.2%	5.2%	15.90%
Dumanaia FLD	4h	75.7%	82.4%	89.5%	88.4%	13.8%	6.00%
Dynamic ELR	6h	82.9%	85.0%	93.4%	91.6%	10.5%	6.60%
	8h	97.7%	99.8%	98.6%	97.7%	0.9%	-2.10%
Lorgo budes	Dynamic	98.9%	100.0%	100.0%	99.4%	1.1%	-0.60%
Large hydro	Fixed shape	95.3%	96.6%	98.2%	97.2%	2.9%	0.60%

¹ Values updated to match new heading

^{*}ELCC results available for all cases, except 2023 PBC LOE

Offshore wind - MRI


75% -

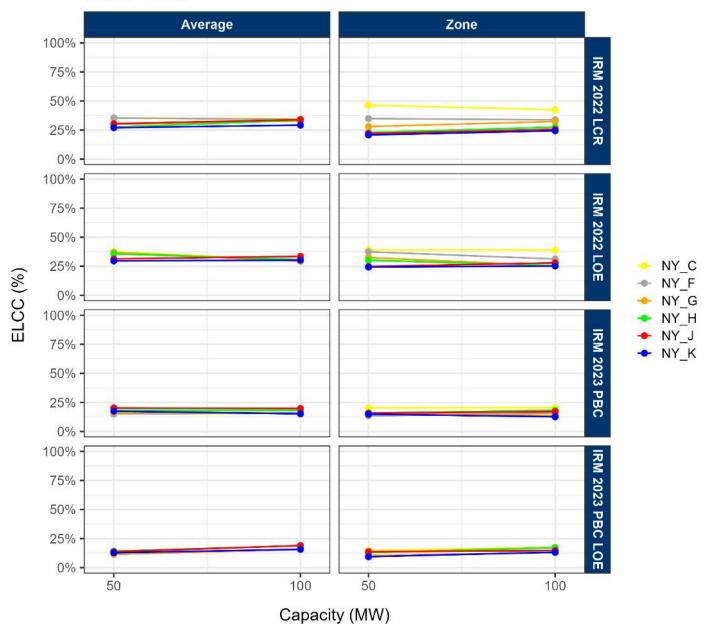
50% -

25% -

0% -

50

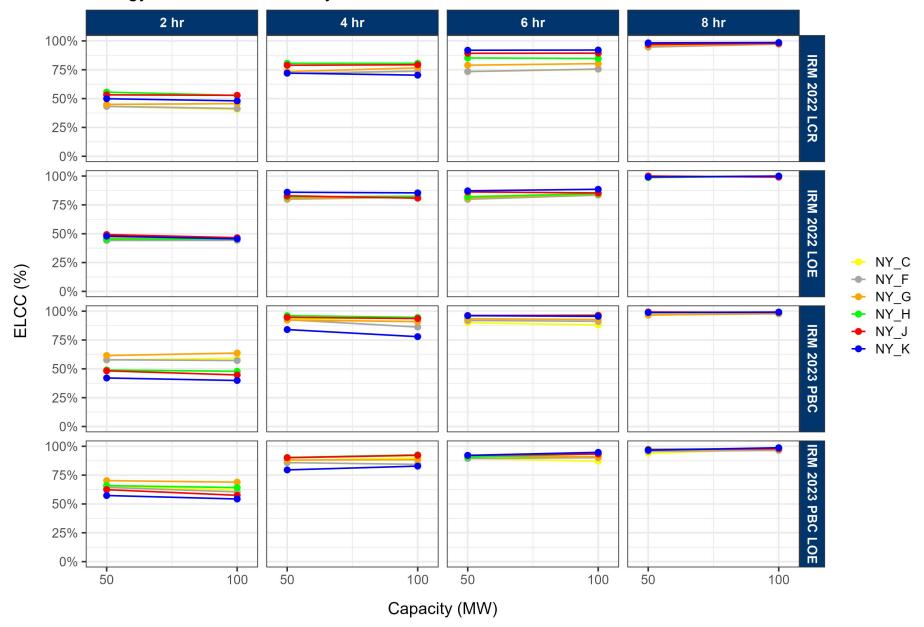
Capacity (MW)


100

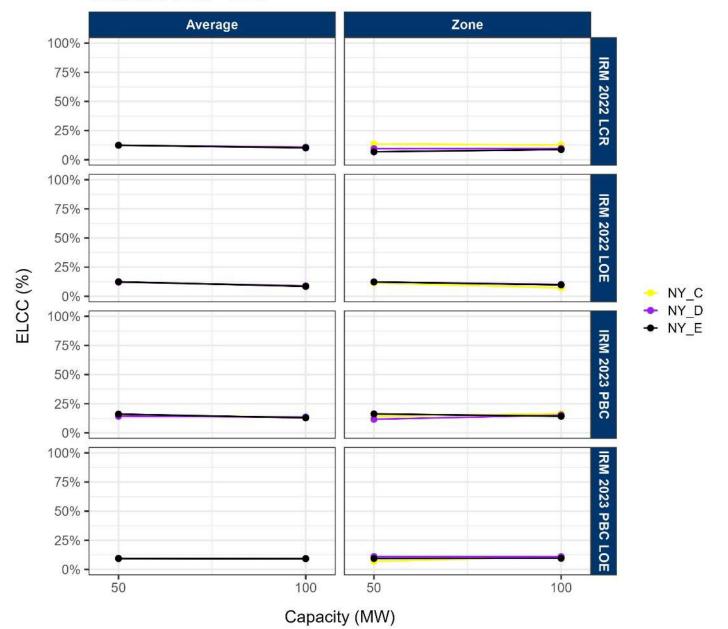
Zone = each zone uses a different shape

Average = all zones use the same shape

Solar - MRI

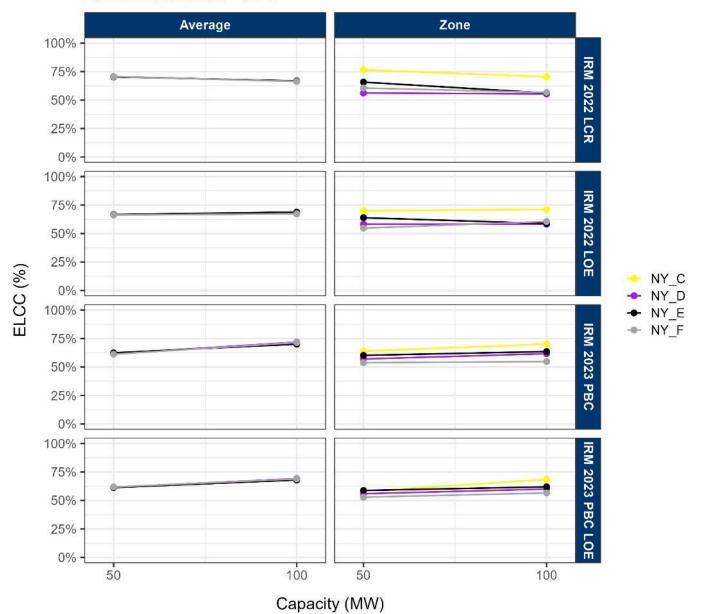


Zone = each zone uses a different shape


Average = all zones use the same shape

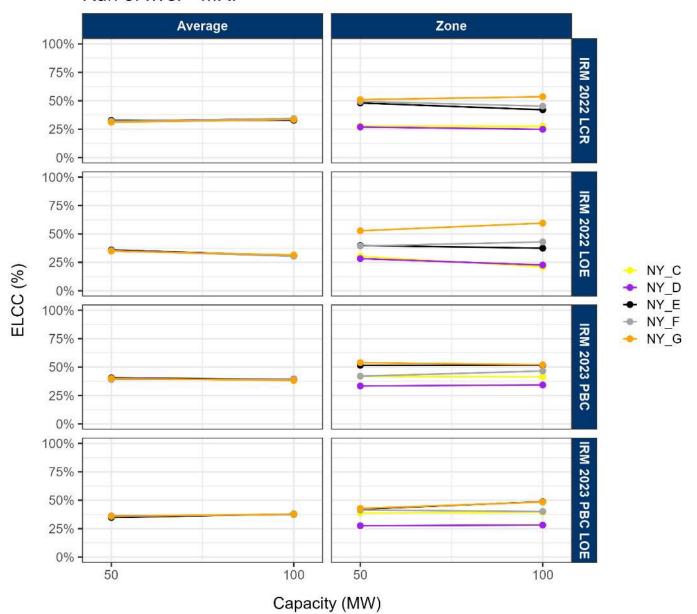
Energy Duration Limited, Dynamic model - MRI

Onshore wind - MRI



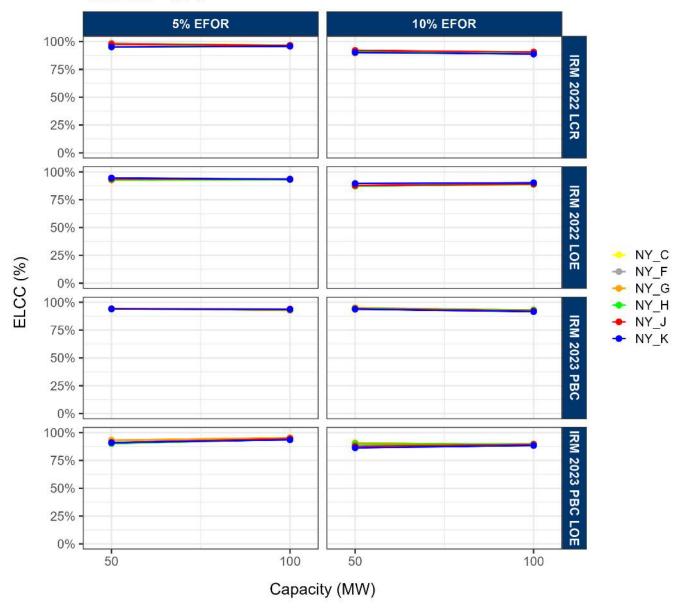
Zone = each zone uses a different shape

Landfill biomass - MRI

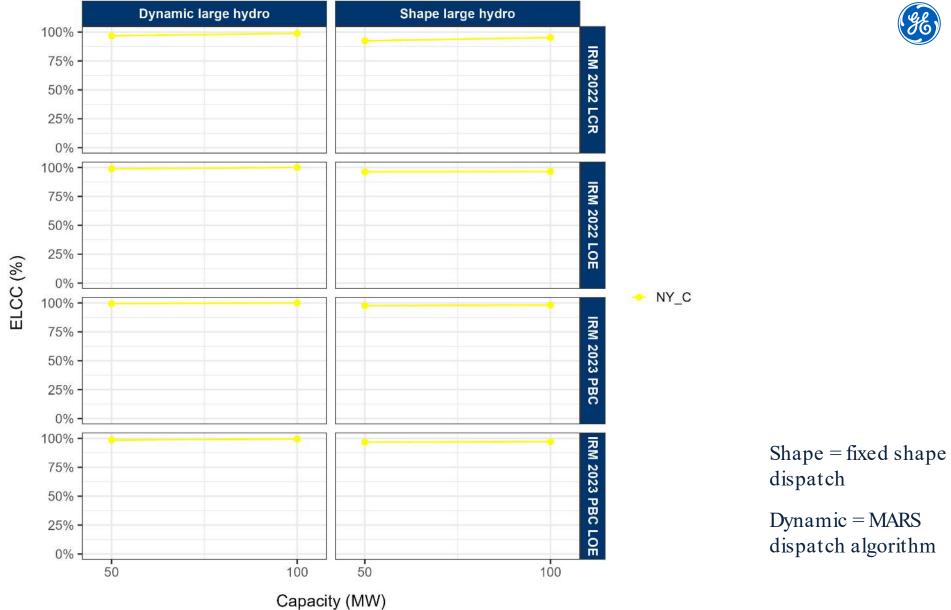


Zone = each zone uses a different shape

Run of river - MRI


Zone = each zone uses a different shape

Average = all zones use the same shape


- 2030 RNA / 2023 IRM PBC results

Thermal - MRI

Large hydro - MRI

10/27/2022

Confidential. Not to be copied, reproduced, or distributed without prior approval.

CAUTION CONCERNING FORWARDLOOKING STATEMENTS:

This document contains "forward-looking statements" — that is, statements related to future events that by their nature address matters that are, to different degrees, uncertain. For details on the uncertainties that may cause our actual future results to be materially different than those expressed in our forward-looking statements, see http://www.ge.com/investor-relations/disclaimer-caution-concerning-forwardlooking-statements as well as our annual reports on Form 10-K and quarterly reports on Form 10-Q. We do not undertake to update our forward-looking statements. This document also includes certain forward-looking projected financial information that is based on current estimates and forecasts. Actual results could differ materially. to total risk-weighted assets.]

NON-GAAP FINANCIAL MEASURES:

In this document, we sometimes use information derived from consolidated financial data but not presented in our financial statements prepared in accordance with U.S. generally accepted accounting principles (GAAP). Certain of these data are considered "non-GAAP financial measures" under the U.S. Securities and Exchange Commission rules. These non-GAAP financial measures supplement our GAAP disclosures and should not be considered an alternative to the GAAP measure. The reasons we use these non-GAAP financial measures and the reconciliations to their most directly comparable GAAP financial measures are posted to the investor relations section of our website at www.ge.com. [We use non-GAAP financial measures including the following:

- Operating earnings and EPS, which is earnings from continuing operations excluding non-service-related pension costs of our principal pension plans.
- GE Industrial operating & Vertical earnings and EPS, which is operating earnings of our industrial businesses and the GE Capital businesses that we expect to retain.
- GE Industrial & Verticals revenues, which is revenue of our industrial businesses and the GE Capital businesses that we expect to retain.
- Industrial segment organic revenue, which is the sum of revenue from all of our industrial segments less the effects of acquisitions/dispositions and currency exchange.
- Industrial segment organic operating profit, which is the sum of segment profit from all of our industrial segments less the effects of acquisitions/dispositions and currency exchange.
- Industrial cash flows from operating activities (Industrial CFOA), which is GE's cash flow from operating activities excluding dividends received from GE Capital.
- Capital ending net investment (ENI), excluding liquidity, which is a measure we use to measure the size of our Capital segment.
- •GE Capital Tier 1 Common ratio estimate is a ratio of equity

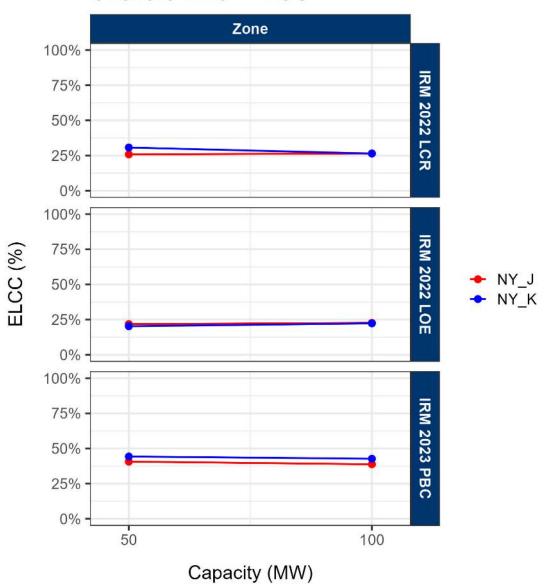
ADDITIONAL SLIDES

Capacity Value – 2030 RNA / 2023 IRM PBC results 44

2023 IRM PBCELCC results

Capacity Value — 2030 RNA / 2023 IRM PBC results 45

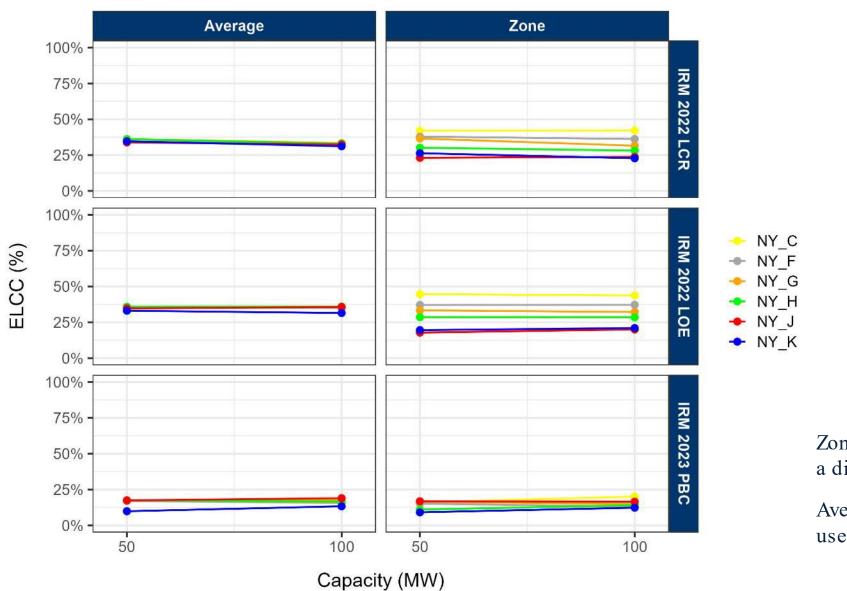
Comparison of 2023 PBC cases and IRM 2022 LCR



		Average ELCC Capacity Value (100 MW)			Change from 2022 LCR
Туре	Subtype	IRM 2022 LCR	IRM 2022 LOE	IRM 2023 PBC	IRM 2023 PBC
Thermal	5% EFOR	94.7%	95.2%	95.4%	0.7%
	10% EFOR	88.1%	95.0%	92.5%	4.4%
Biomass	Average	65.3%	67.1%	65.4%	0.1%
	Zone	62.0%	63.6%	57.7%	-4.4%
Run of river	Average	35.5%	32.7%	35.6%	0.2%
	Zone	39.3%	37.3%	39.3%	0.0%
Onshore wind	Average	8.6%	6.3%	13.1%	4.5%
	Zone	8.3%	8.0%	11.2%	2.9%
Offshore wind	Zone	26.5%	22.5%	40.7%	14.3%
Solar	Average	32.7%	34.8%	16.3%	-16.4%
	Zone	30.8%	30.5%	15.1%	-15.6%
	2h	42.7%	48.3%	N/A	N/A
Dunamic ELD	4h	70.5%	87.7%	86.3%	15.9%
Dynamic ELR	6h	76.7%	90.5%	91.5%	14.8%
	8h	98.7%	99.0%	98.4%	-0.3%
Large budro	Dynamic	98.9%	99.2%	98.8%	-0.2%
Large hydro	Fixed shape	97.0%	99.2%	98.7%	1.8%

Similar trends were described for the MRI-based results in the main slides

Offshore wind - ELCC



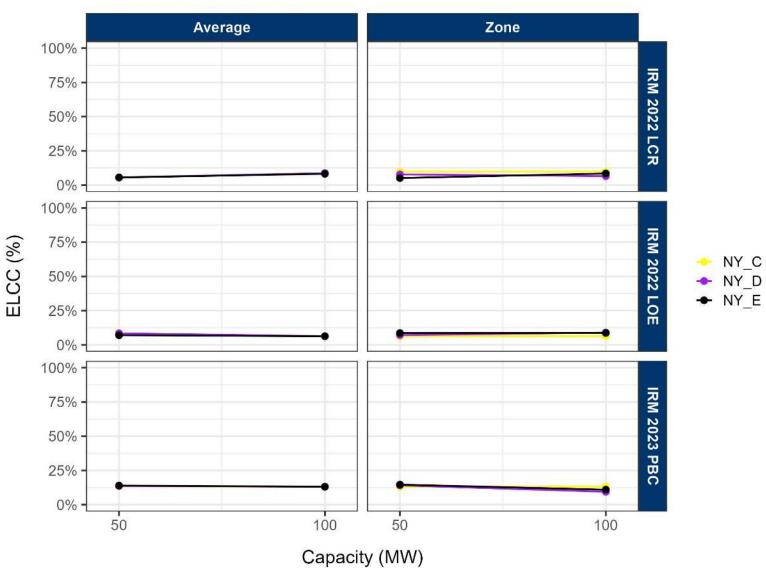
Zone = each zone uses a different shape

Solar - ELCC

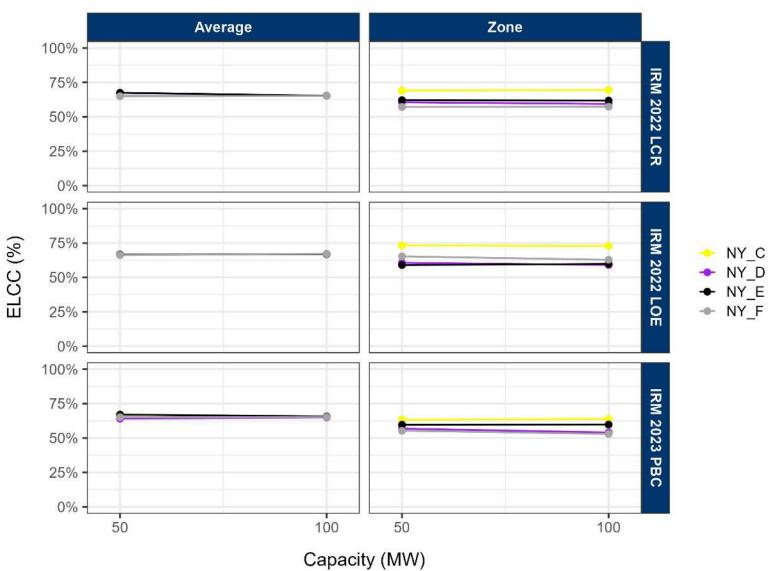

Zone = each zone uses a different shape

Average = all zones use the same shape

48

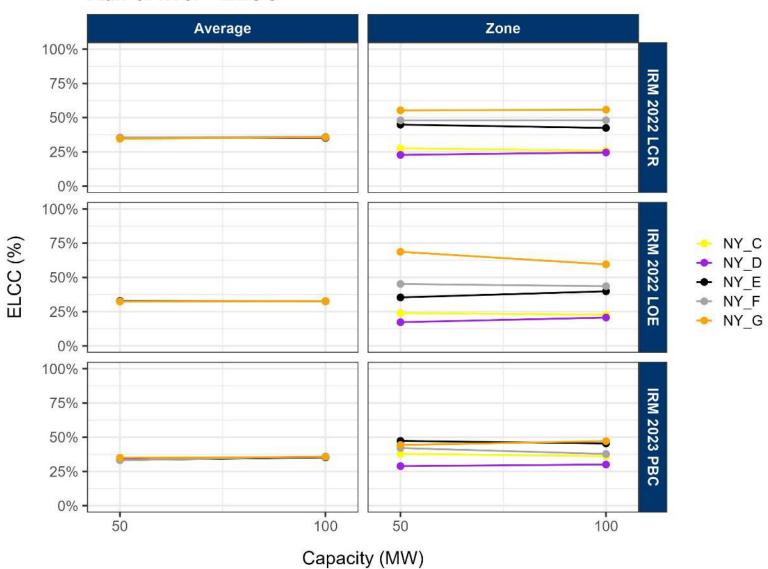

Energy Duration Limited, Dynamic model - ELCC

Onshore wind - ELCC



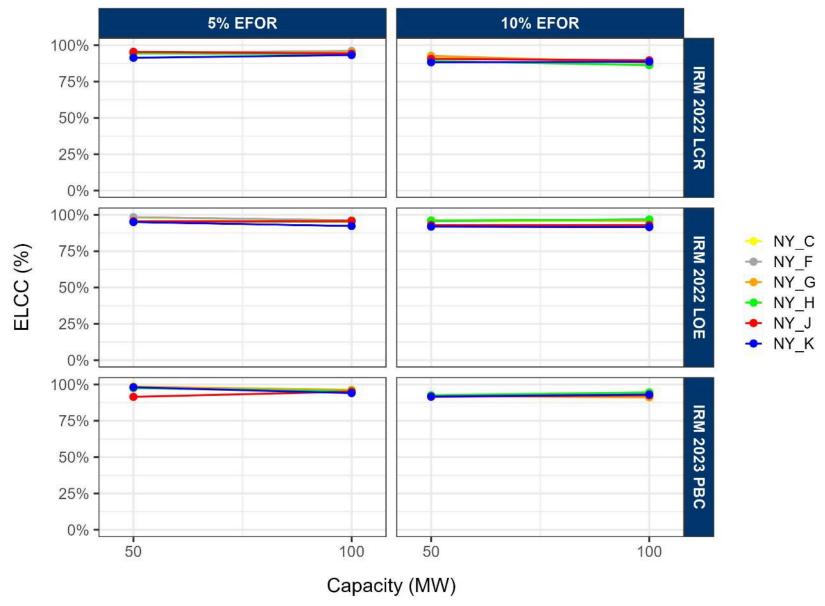
Zone = each zone uses a different shape

Landfill biomass - ELCC

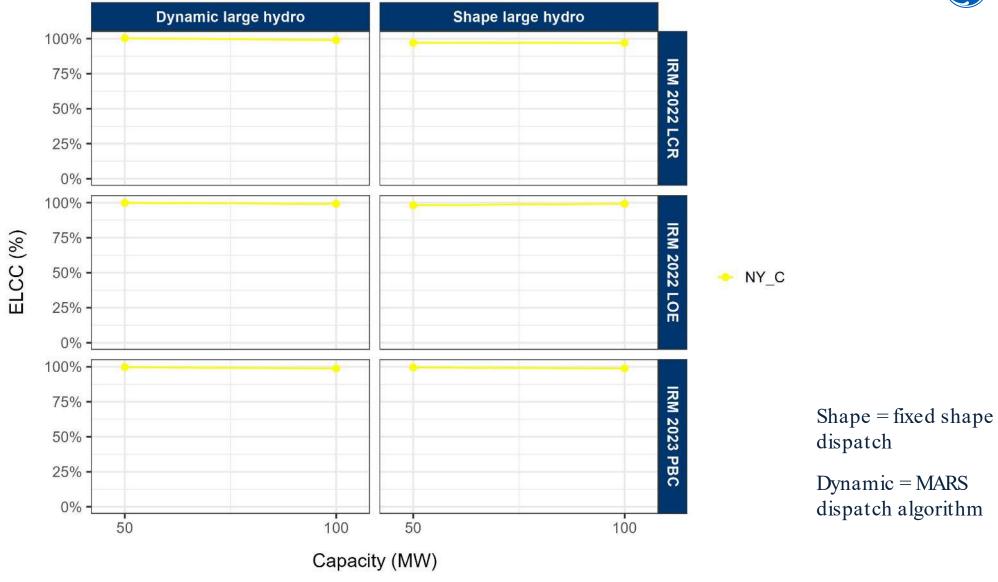


Zone = each zone uses a different shape

Run of river - ELCC



Zone = each zone uses a different shape


Thermal - ELCC

Large hydro - ELCC

- 2030 RNA / 2023 IRM PBC results